
EAGLE does Space Efficient LTL Monitoring

Howard Barringer?1, Allen Goldberg2, Klaus Havelund2 and Koushik Sen??3

1 University of Manchester, England
2 Kestrel Technology, NASA Ames Research Center, USA

3 University of Illinois, Urbana Champaign, USA

Abstract. We briefly present a rule-based framework, calledEAGLE, that has
been shown to be capable of defining and implementing finite trace monitoring
logics, including future and past time temporal logic, extended regular expres-
sions, real-time and metric temporal logics (MTL), interval logics, forms of quan-
tified temporal logics, and so on. In this paper we show howEAGLE can perform
linear temporal logic (LTL) monitoring in an efficient way. For an initial formula
of sizem, we establish upper bounds ofO(m22m logm) andO(m422m log2m) for
the space and time complexity, respectively, of single step evaluation over an in-
put trace.EAGLE has been successfully used, in both LTL and metric LTL forms,
to test a real-time controller of an experimental NASA planetary rover.

1 Introduction

Linear temporal logic (LTL) [15] is now widely used for expressing properties of con-
current and reactive systems. Associated, production quality, verification tools have
been developed, most notably based on model-checking technology, and have enjoyed
much success when applied to relatively small-scale models. Tremendous advances
have been made in combating the combinatoric state space explosion inherent with data
and concurrency in model checking, however, there remain serious limitations for its
application to full-scale models and to software. This has encouraged a shift in the way
model checking techniques are being applied, from full state space coverage to bounded
use for sophisticated testing, or debugging, and from static application to dynamic, or
runtime, application. Our work onEAGLE concerns this latter direction.

In runtime verification a software component, an observer, monitors the execution
of a program and checks its conformity with a requirement specification. Runtime ver-
ification can be applied to evaluate automatically test runs, either on-line or off-line,
analyzing stored execution traces; or it can be used on-line during operation. Several
runtime verification systems have been developed, of which some were presented at
three recent international workshops on runtime verification [1]. The commercial tool
Temporal Rover (TR) [5, 6] supports a fixed future and past time LTL, with the pos-
sibility of specifying real-time and data constraints (time-series) as annotations on the
temporal operators; its implementation is based on alternating automata. Algorithms
using alternating automata to monitor LTL properties are also proposed in [8], and a
specialized LTL collecting statistics along the execution trace is described in [7]. The

? This author is most grateful to RIACS/USRA and to the UK’s EPSRC under grant
GR/S40435/01 for the partial support provided to conduct this research.

?? This author is grateful for the support received from RIACS to undertake this research while
participating in the Summer Student Research Program at the NASA Ames Research Center.

MAC logic [14] is a form of past-time LTL with operators inspired by interval logics
and which models real-time via explicit clock variables. A logic based on extended
regular expressions [16] has also been proposed and is argued to be more succinct for
certain properties. The logic described in [13] is a sophisticated interval logic, argued
to be more user-friendly than plain LTL. Our own previous work includes the develop-
ment of several algorithms, such as generating dynamic programming algorithms for
past time logic [11], using a rewriting system for monitoring future-time logic [10], or
generating B̈uchi automata inspired algorithms adapted to finite trace LTL [9].

This wide variety of logics caused us to search for a compact but general framework
for defining monitoring logics, which would be powerful enough to capture essentially
all of the above described logics, and more. Much influenced by our earlier work on
executable temporal logicMETATEM, see for example [3], the logicEAGLE was the re-
sult. In [4], we showed the richness and expressivity ofEAGLE, described an algorithm
to synthesize monitors forEAGLE and commented on an implementation of the frame-
work in Java and some initial experiments. However, we found that the efficiency and
complexity analysis of the generalEAGLE monitoring algorithm is difficult and can be
shown to be dependent on both the length of the trace and the size of the initial formula
in the worst case. In this paper, we thus investigate the complexity and efficiency of
the monitoring algorithm for the special case of LTL containing a fixed number of past
and future time temporal operators embedded as rules inEAGLE. We outline a space
efficient implementation of the monitoring algorithm and prove that its space and time
complexity is exponential in the size of the formula and which is independent of the
length of the trace for single step evaluation. This makes it very efficient in terms of
space as we do not store the trace either explicitly or implicitly. To our knowledge this
is the first work on general LTL monitoring, with fully mixed past and future operators,
that avoids the use of an automaton. Similar work was done in a rewriting framework
for the case of future time LTL in [10]; however, there the complexity of the monitor-
ing was not clear as it was dependent on the strategy used by the rewrite engine for
rewriting. The work in [11] addresses a monitoring algorithm for past time LTL only.

The paper is structured as follows. Section 2 gives a formal definition of LTL on
finite traces, introduces our logic frameworkEAGLE and then specializes it to LTL. In
section 3 we discuss the monitoring algorithm and calculus with an illustrative exam-
ple. This underlies our implementation for the special case of LTL, which is briefly
described along with complexity and initial experimentation in section 4.

2 Linear Temporal Logic and the logic EAGLE

In this section, we first define linear temporal logic (LTL) for finite trace monitoring and
then introduce our general purpose finite trace monitoring logic,EAGLE [4]. EAGLE

offers a succinct but powerful set of primitives, essentially supporting recursive pa-
rameterized equations, with a minimal/maximal fix-point semantics together with three
temporal operators: next-time, previous-time, and concatenation. The parametrization
of rules supports reasoning about data values as well as the embedding of real-time,
metric and statistical temporal logics; for examples of such, see [4]. In Section 2.2 we
motivate the fundamental concepts ofEAGLE through some simple examples drawn
from LTL before presenting its formal definition. Finally, in Section 2.3 we present a
full embedding of LTL inEAGLE and establish its correctness.

2

2.1 Propositional Linear Temporal Logic

In specification and verification contexts, LTL is usually defined over infinite sequences
of states, each sequence corresponding to a “complete” infinite, or non-terminating,
computation. For run-time verification purposes, properties are checked on finite traces.
Thus our definition of LTL differs from the usual for the boundary cases. We assume the
usual collection of temporal operators for reasoning over the past, present and future.
Furthermore, we place no restrictions on the nesting or intermixing of past and future
operators. The syntax of LTL is as follows.

F ::= a | true| false| ¬F | F ∧F | F ∨F | F → F propositional
©F |¤F | ♦F | F U F | F W F future time⊙

F |¡F | ♦· F | F S F | F Z F past time

The semantics of the logic is defined in terms of a satisfaction relation,|=LTL, between
an execution trace, an index and an LTL formula. An execution traceσ is a finite se-
quence of program statesσ = s1s2 . . .sn, where|σ| = n is the length of the trace. The
i’th statesi of a traceσ is denoted byσ(i). The termσ[i, j] denotes the sub-trace ofσ
from positioni to position j, both positions included. The notion that a finite traceσ
satisfiesa formulaF is then denoted byσ,1 |=LTL F . It is defined inductively by the
definitions given below, where0≤ i ≤ n+1 for some traceσ = s1s2 . . .sn. Note that the
index i for a trace can become0 (before the first state) when going backwards, and can
becomen+1 (after the last state) when going forwards. Since the context is clear, we
omit below the indexLTL from |=LTL.

σ, i |= a iff 1≤ i ≤ |σ| andevaluate(a)(σ(i)) == true
σ, i |= true
σ, i 6|= false
σ, i |= ¬F iff σ, i 6|= F
σ, i |= F1∧F2 iff σ, i |= F1 andσ, i |= F2
σ, i |= F1∨F2 iff σ, i |= F1 or σ, i |= F2
σ, i |= F1 → F2 iff σ, i |= F1 impliesσ, i |= F2
σ, i |=©F iff 1≤ i ≤ |σ| andσ, i +1 |= F
σ, i |= ⊙

F iff 1≤ i ≤ |σ| andσ, i−1 |= F
σ, i |= ¤F iff if 1≤ i ≤ |σ| then∀ j : i ≤ j ≤ |σ| impliesσ, j |= F
σ, i |= ¡F iff if 1≤ i ≤ |σ| then∀ j : 1≤ j ≤ i impliesσ, j |= F
σ, i |= ♦F iff 1≤ i ≤ |σ| and∃ j : i ≤ j ≤ |σ| andσ, j |= F
σ, i |= ♦· F iff 1≤ i ≤ |σ| and∃ j : 1≤ j ≤ i andσ, j |= F
σ, i |= F1 U F2 iff 1≤ i ≤ |σ| and∃i2 : i ≤ i2 ≤ |σ| andσ, i2 |= F2 and

∀ i1 : i ≤ i1 < i2 impliesσ, i1 |= F1
σ, i |= F1 S F2 iff 1≤ i ≤ |σ| and∃i2 : 1≤ i2 ≤ i andσ, i2 |= F2 and

∀ i1 : i2 < i1 ≤ i impliesσ, i1 |= F1
σ, i |= F1 W F2 iff σ, i |= F1 U F2 or σ, i |= ¤F1
σ, i |= F1 Z F2 iff σ, i |= F1 S F2 or σ, i |= ¡F1

Note that for the boundary cases,σ,0 |= ¡F and σ, |σ|+ 1 |= ¤F hold. The usual
dualities are maintained, e.g.¤F ≡ ¬♦¬F , and henceσ, |σ|+ 1 |= ♦F doesn’t hold.
Further, note that the next operator,©, is defined to be strong (or existential), hence
σ, |σ|+1 |=©F doesn’t hold. Thus the formula¬© trueonly evaluates to true beyond
the final state, i.e. on an empty future trace.

3

2.2 Introducing EAGLE

Fundamental Concepts In most temporal logics, the formulas¤F and♦F satisfy the
following equivalences:

¤F ≡ F ∧©(¤F) ♦F ≡ F ∨©(♦F)

One can show that¤F is a solution to the recursive equationX = F ∧©X; in fact it is
the maximal solution. A fundamental idea in our logic,EAGLE, is to support this kind
of recursive definition, and to enable users define their own temporal combinators using
equations similar to those above. In the current framework one can write the following
definitions for the two combinatorsAlways andEventually :

maxAlways (FormF) = F ∧©Always (F)
min Eventually (FormF) = F ∨©Eventually (F)

First note that these rules are parameterized by anEAGLE formula (of type Form).
Thus, assuming an atomic formula, sayx < 0, then, in the context of these two
definitions, we will be able to writeEAGLE formulas such as,Always (x > 0), or
Always (Eventually (x > 0)). Secondly, note that theAlways operator is defined as
maximal; when applied to a formulaF it denotes the maximal solution to the equation
X = F ∧©X. On the other hand, theEventually operator is defined as a minimal,
andEventually (F) represents the minimal solution to the equationX = F ∨©X. In
EAGLE, this difference only becomes important when evaluating formulas at the bound-
aries of a trace. To understand how this works it suffices to say here that monitored rules
evolve as new states are appearing. Assume that the end of the trace has been reached
(we are beyond the last state) and a monitored formulaF has evolved toF ′. Then all
applications inF ′ of maximal fix-point rules will evaluate to true, since they represent
safety properties that apparently have been satisfied throughout the trace, while appli-
cations of minimal fix-point rules will evaluate to false, indicating that some event did
not happen.

EAGLE has been designed specifically as a general purpose, but low-level, temporal
logic for run-time monitoring. So to complete this very brief introduction toEAGLE
suppose one wished to monitor the following property of a Java program state contain-
ing two variablesx andy: “whenever we reach a state wherex= k > 0 for some valuek,
then eventually we will reach a state at whichy == k”. In a linear temporal logic aug-
mented with first order quantification, we would write:¤(x> 0→∃k.(k= x∧♦y= k)).
The parametrization mechanism ofEAGLE allows data parameters as well as formula
ones and we are then able to encode the above as:

min R(int k) = Eventually (y == k) monM = Always (x > 0→ R(x))

The definition starting with keyword monspecifies theEAGLE formula to be monitored.
The ruleR is parameterized with an integerk; it is instantiated in the monitorM when
x > 0 and hence captures the value ofx at that moment. RuleR replaces the existential
quantifier.EAGLE also provides a previous-time operator, which allows us to define
past time operators, and a concatenation operator, which allows users to define interval
based logics, and more. Data parametrization works uniformly for rules over past as
well as future; this is non-trivial to achieve as the implementation doesn’t store the
trace, see [4]. Data parametrization is also used to elegantly model real-time, metric
and statistical logics.

4

EAGLE Syntax A specificationSconsists of a declaration partD and an observer part
O. D consists of zero or more rule definitionsR, andO consists of zero or more monitor
definitionsM, which specify what is to be monitored. Rules and monitors are named
(N).

S ::= D O
D ::= R∗
O ::= M∗
R ::= {max |min} N(T1 x1, . . . ,Tn xn) = F
M ::= monN = F
T ::= Form| primitive type
F ::= expression| true| false| ¬F | F1∧F2 | F1∨F2 | F1 → F2 |

©F |⊙F | F1 ·F2 | N(F1, . . . ,Fn) | xi

A rule definitionR is preceded by a keyword indicating whether the interpretation is
maximal or minimal (which we recall determines the value of a rule application at the
boundaries of the trace). Parameters are typed, and can either be a formula of type
Form, or of a primitive type, such as int, long, float, etc.. The body of a rule/monitor
is a boolean-valued formula of the syntactic categoryForm (with meta-variablesF ,
etc.). However, a monitor cannot have a recursive definition, that is, a monitor defined
as monN = F cannot useN in F . For rules we do not place such restrictions. The
propositions of this logic are boolean expressions over an observer state. Formulas are
composed using standard propositional connectives together with a next-state operator
(©F), a previous-state operator (

⊙
F), and a concatenation-operator (F1 ·F2). Finally,

rules can be applied and their parameters must be type correct; formula arguments can
be any formula, with the restriction that if an argument is an expression, it must be of
boolean type.

EAGLE Semantics The semantics of the logic is defined in terms of a satisfaction
relation,|=, between execution traces and specifications. As with the LTL semantics,
we assume an execution traceσ is a finite sequence of program statesσ = s1s2 . . .sn,
where|σ| = n is the length of the trace, and adopt the same notation for indexing and
slicing. Given a traceσ and a specificationD O, we define:

σ |= D O iff ∀ (monN = F) ∈O . σ,1 |=D F

That is, a trace satisfies a specification if the trace, observed from position1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation|=D

⊆ (Trace×nat)×Form, for a set of rule definitionsD, is presented in Figure 1 below,
where0≤ i ≤ n+1 for some traceσ = s1s2 . . .sn. Note that, as with the LTL definitions,
the position of a trace can become0 (before the first state) when going backwards, and
can becomen+ 1 (after the last state) when going forwards both cases causing rule
applications to evaluate to either true if maximal or false if minimal, without considering
the body of the rules at that point. An atomic formula (atom) is evaluated in the current
state,i, in case the positioni is within the trace (1≤ i ≤ n); for the boundary cases
(i = 0 and i = n+ 1) it evaluates to false. Propositional connectives have their usual
semantics in all positions. A next-time formula©F evaluates to true if the current
position is not beyond the last state andF holds in the next position. Dually for the
previous-time formula. This means that these formulas always evaluate to false in the
boundary positions (0 andn+1). The concatenation formulaF1 ·F2 is true if the trace

5

σ, i |=D atom iff 1≤ i ≤ |σ| andevaluate(atom)(σ(i)) == true
σ, i |=D true
σ, i 6|=D false
σ, i |=D ¬F iff σ, i 6|=D F
σ, i |=D F1∧F2 iff σ, i |=D F1 andσ, i |=D F2
σ, i |=D F1∨F2 iff σ, i |=D F1 or σ, i |=D F2
σ, i |=D F1 → F2 iff σ, i |=D F1 impliesσ, i |=D F2
σ, i |=D ©F iff i ≤ |σ| andσ, i +1 |=D F
σ, i |=D

⊙
F iff 1≤ i andσ, i−1 |=D F

σ, i |=D F1 ·F2 iff ∃ j s.t. i ≤ j ≤ |σ|+1 andσ[1, j−1], i |=D F1 andσ[j,|σ|],1 |=D F2

σ, i |=D N(F1, . . . ,Fm) iff

if 1≤ i ≤ |σ| then:
σ, i |=D F [x1 7→ F1, . . . ,xm 7→ Fm]
where (N(T1 x1, . . . ,Tm xm) = F) ∈ D

otherwise, ifi = 0 or i = |σ|+1 then:
ruleN is defined as maxin D

Fig. 1. Definition of σ, i |=D F for 0≤ i ≤ |σ|+1 for some traceσ = s1s2 . . .s|σ|

σ can be split into two sub-tracesσ = σ1σ2, such thatF1 is true onσ1, observed from
the current positioni, andF2 is true onσ2 (ignoringσ1, and thereby limiting the scope
of past time operators). Applying a rule within the trace (positions1. . .n) consists of
replacing the call with the right-hand side of the definition, substituting arguments for
formal parameters. At the boundaries (0 andn+1) a rule application evaluates to true
if and only if it is maximal.

2.3 Linear Temporal Logic in EAGLE

We have briefly shown how inEAGLE one can define rules for the¤ and♦ temporal
operators for LTL. Here we complete an embedding of propositional LTL inEAGLE
and prove its semantic correspondence. For each temporal operator, future and past,
we define a correspondingEAGLE rule. The embedding is straightforward and requires
little explanation. The future time operators give rise to the following set of rules:

min Next (FormF) =©F
maxAlways (FormF) = F ∧©Always (F))
min Eventually (FormF) = F ∨©Eventually (F))
min Until (FormF1,FormF2) = F2∨ (F1∧©Until (F1,F2))
maxUnless (FormF1,FormF2) = F2∨ (F1∧©Unless (F1,F2))

Note that the unless modality is defined as maximal since we require that
Unless (F1,F2) evaluates to true on the empty sequence, unlikeUntil (F1,F2) that must
evaluate to false on the empty sequence. The past time operators of LTL give rise to the
following rules.

min Previous (FormF) =
⊙

F
maxAlwaysInPast (FormF) = F ∧⊙

AlwaysInPast (F))
min EventuallyInPast (FormF) = F ∨⊙

EventuallyInPast (F))
min Since (FormF1,FormF2) = F2∨ (F1∧

⊙
Since (F1,F2))

maxZince (FormF1,FormF2) = F2∨ (F1∧
⊙

Zince (F1,F2))

6

An EAGLE context containing all of the above rules then enables any propositional LTL
monitoring formula to be expressed as a monitoring formula inEAGLE by mapping the
LTL operators to theEAGLELTL counterparts. Note that through simply combining the
definitions for the future and past time LTLs defined above, we obtain a temporal logic
over the future, present and past, in which one can freely intermix the future and past
time modalities (to any depth).

Correctness of Embedding: To justify the aboveEAGLE definitions of LTL temporal
operators, we can define an embedding functionEmbed: LTL→ EAGLE that maps©F
to Next (Embed(F)), ¤F to Always (Embed(F)), etc., and then formally establish that
σ, i |=LTL F iff σ, i |=EAGLE Embed(F) for all tracesσ and indicesi. Note that|=LTL

refers to the semantic definition of LTL in Section 2.1 and|=EAGLE refers to the seman-
tic definition of EAGLE as in Section 2.2 together with the rule definitions forNext ,
Always , etc.. The proof is by induction over the structure of the formulaF . For brevity,
we only show one step of the inductive proof, that relating to theU operator. The base
case is when the formula is atomic and trivially holds. The main result is then used as the
inductive hypothesis, namely:σ, i |=LTL F iff σ, i |=EAGLE Embed(F) for all tracesσ
and indicesi. For theU operator, we must then showσ, i |=LTL F1 U F2 iff σ, i |=EAGLE
Until (Embed(F1),Embed(F2)) for arbitraryσ andi.

First, assumeσ, i |=LTL F1 U F2 for arbitrary σ and i. By the definition ofU,
there exists ani2 such thati ≤ i2 ≤ |σ| andσ, i2 |=LTL F2 and for all i1, i ≤ i1 < i2,
σ, i1 |=LTL F1. Hence by the inductive hypothesis,σ, i2 |=EAGLE Embed(F2) and for all
i1, i ≤ i1 < i2, σ, i1 |=EAGLE Embed(F1). We will show by a downward iterative argu-
ment oni2 thatσ, i |=EAGLE Until (Embed(F1),Embed(F2)). For the basis wheni2 = i,
it is clear by the definition ofUntil thatσ, i |=EAGLE Until (Embed(F1),Embed(F2)).
For the case that|σ| ≥ i2 > i again by the definition ofUntil , we can derive
that σ, i2 |=EAGLE Until (Embed(F1),Embed(F2)), and hence by the definition of©
that σ, i2− 1 |=EAGLE ©Until (Embed(F1),Embed(F2)). But note we also have that
σ, i1 |=LTL F1 for i ≤ i1 < i2, hence fori1 = i2−1 we haveσ, i2−1 |=LTL F1. Therefore
by the inductive hypothesis we haveσ, i2−1 |=EAGLE Embed(F1).

Thus: σ, i2−1 |=EAGLE Embed(F1)∧©Until (Embed(F1),Embed(F2))
hence: σ, i2−1 |=EAGLE Embed(F2)∨Embed(F1)∧©Until (Embed(F1),Embed(F2))
i.e.: σ, i2−1 |=EAGLE Until (Embed(F1),Embed(F2))

From which we can inferσ, i |=EAGLE Until (Embed(F1),Embed(F2)).
Second, assumeσ, i 6|=LTL F1 U F2. Then, by the semantics ofU: either (i) for

i1, i ≤ i1 ≤ |σ|, σ, i1 6|=LTL F2; or (ii) there is somei2, i ≤ i2 ≤ |σ| s.t. σ, i2 6|=LTL F1

and for all i1, i ≤ i1 ≤ i2, σ, i1 6|=LTL F2. For both these cases, it can be shown that
σ, i 6|=EAGLE Until (Embed(F1),Embed(F2)). For (i) the evaluation ofσ, i |=EAGLE
Until (Embed(F1),Embed(F2)) will reduce to the evaluation ofσ, |σ|+ 1 |=EAGLE
Until (Embed(F1),Embed(F2)), which is false since theUntil rule is defined as min-
imal. For (ii), by the semantics ofUntil and the inductive hypothesis,σ, i2 6|=EAGLE
Until (Embed(F1),Embed(F2)). Furthermore, asσ, i1 6|=LTL F2 for all i1, i ≤ i1 ≤ i2,
it follows thatσ, i1 6|= EAGLEUntil (Embed(F1),Embed(F2)), and henceσ, i 6|=EAGLE
Until (Embed(F1),Embed(F2)).

The cases for the other temporal operators are as straightforward.

7

3 Algorithm

In this section, we now outline the computation mechanism used to determine whether
a monitoring formula given in LTL holds for some given input sequence of events. We
assume that a user of the system specifies a set of (EAGLE embedded) LTL formulas that
needs to be monitored; no rule definitions are given in the specification. The monitoring
system, or theobserver, maintains a local state. Theatomic propositionsare specified
with respect to the variables in this local state. At every event the observer modifies the
local state based on that event and then evaluates the monitored formulas on that state
and generates a new set of monitored formulas. At the end of the trace the value of the
monitored formulas are determined. If the value is true for a formula we say that the
formula is satisfied, otherwise we say that the formula is violated.

The evaluation of a formulaF on a states = σ(i) in a traceσ results in another
formulaeval(F,s) with the property thatσ, i |= F if and only if σ, i +1 |= eval(F,s). The
definition of the functioneval: Form×State→ Formuses another auxiliary function
update: Form×State→ Form. The role of the functionupdateis to pre-evaluate a
formula if it is guarded by a previous operator. Formally,updatehas the property that
σ, i |=©F iff σ, i +1 |= update(F,s). Had there been no past time modality inEAGLE

we could have ignoredupdateand simply writtenσ, i |=©F iff σ, i +1 |= F . The value
of a formulaF at the end of a trace is given byvalue(F). The functionvalue: Form→
{true, false} when applied onF returns trueif F is satisfied at the end of the trace or
in other words iffσ, |σ|+ 1 |= F and returns falseotherwise. Thus given a sequence
of statess1s2 . . .sn, an LTL formulaF written in EAGLE is said to be satisfied by the
sequence of states if and only ifvalue(eval(. . . eval(eval(F,s1),s2) . . .sn)) is true. The
definition of the functionseval, updateandvalueforms the calculus of the LTL subset
of EAGLE. We define this calculus next.

3.1 Calculus

The eval, updateandvalue functions are defined a priori for all operators. Note that,
unlike in generalEAGLE where new temporal operators in the form of rules can be
defined, in LTL the operators are fixed. So instead of giving a general algorithm to
synthesize the definitions ofeval, updateandvalue for the rules [4], we can provide
these definitions for the fixed operators of LTL before hand and make them part of our
calculus. We do not define the functions on the previous operator

⊙
, since this operator

is eliminated in the calculus that we present next. The definition ofeval, updateand
valueon the different primitiveEAGLE operators is given below.

eval(true,s) = true
eval(false,s) = false
eval(jexp,s) = value of jexp ins

eval(F1 opF2,s) = eval(F1,s) op eval(F2,s)
eval(¬F,s) = ¬eval(F,s)

eval(©F,s) = update(F,s)

value(true) = true
value(false) = false
value(jexp) = false

value(F1 opF2) = value(F1) op value(F2)
value(¬F) = ¬value(F)

value(©F) = false

8

update(true,s) = true
update(false,s) = false
update(jexp,s) = jexp

update(F1 opF2,s) = update(F1,s) op update(F2,s)
update(¬F,s) = ¬update(F,s)

update(©F,s) = ©update(F,s)

In the above definitions,opcan be∧,∨,→. Note thatevalof a formula of the form©F
on a states reduces to theupdateof F on states. This ensures that ifF contains any
past time operators thenupdateof F updates them properly. Moreover,value(©F) is
falseas the operator© has a strong interpretation inEAGLE. Thevalueof a maxrule
is trueand that of a minrule is false.

value(R(F1, . . . ,Fn)) = trueif R is max
value(R(F1, . . . ,Fn)) = falseif R is min

The definition of theeval and updatefunctions for the rules are not generic for all
LTL operators. However, as we have a fixed number of rules for a fixed number of
LTL operators we can define these functions for each rule and make them part of the
calculus.

Future Time Operators Consider theAlways operator:

maxAlways (FormF) = F ∧©Always (F)

For this ruleevalandupdateare defined as follows.

eval(Always (F),s) = eval(F ∧©Always (F),s)
update(Always (F),s) = Always (update(F,s))

Note that if we define theupdatefunction in a way similar toeval:

update(Always (F),s) = update(F ∧©Always (F),s)

then definition ofupdateresults in infinite recursion. To stop the recursion we note that
the ruleAlways does not contain any previous operator, although the argumentF may
contain some. So we simply propagate theupdateto the argumentF . Similarly we can
give the calculus for the other future time LTL operators as follows:

eval(Next (F),s) = eval(©F,s)
update(Next (F),s) = Next (update(F,s))

eval(Eventually (F),s) = eval(F ∨©Eventually (F),s)
update(Eventually (F),s) = Eventually (update(F,s))

eval(Until (F1,F2),s) = eval(F2∨ (F1∧©Until (F1,F2)),s)
update(Until (F),s) = Until (update(F1,s),update(F2,s))

eval(Unless (F1,F2),s) = eval(F2∨ (F1∧©Unless (F1,F2)),s)
update(Unless (F),s) = Unless (update(F1,s),update(F2,s))

9

Past Time Operators However, the definitions are different for past time LTL oper-
ators. The past time LTL operators are defined in the form of rules containing a

⊙
operator. In general, if a rule contains a formulaF guarded by a previous operator on
its right hand side then we evaluateF at every event and use the result of this evalua-
tion in the next state. Thus, the result of evaluatingF is required to be stored in some
temporary placeholder so that it can be used in the next state. To allocate a placeholder,
we introduce, for every formula guarded by a previous operator, an argument in the
rule and use these arguments in the definition ofeval andupdatefor this rule. Let us
illustrate this as follows.

maxAlwaysInPast (FormF) = F ∧⊙
AlwaysInPast (F)

For this rule we introduce another auxiliary ruleAlwaysInPast ′ that contains an extra
argument corresponding to the formula

⊙
(AlwaysInPast (F)). In any LTL formula,

we use this prime version of the rule instead of the original rule.

AlwaysInPast (F) = AlwaysInPast ′(F, true)
eval(AlwaysInPast ′(F,past1),s) = eval(F ∧past1,s)
update(AlwaysInPast ′(F,past1),s) =

AlwaysInPast ′(update(F,s),eval(AlwaysInPast ′(F,past1),s))

Here, ineval, the subformula
⊙

(AlwaysInPast (F)) guarded by the previous operator
is replaced by the argumentpast1 that contains the evaluation of the subformula in the
previous state. Inupdatewe not only update the argumentF but also evaluate the sub-
formula AlwaysInPast ′(F,past1) and pass it as second argument ofAlwaysInPast ′.
Thus in the next statepast1 is bound to

⊙
(AlwaysInPast ′(F,past1)). Note that in the

definition of AlwaysInPast ′ we pass trueas the second argument. This is because,
AlwaysInPast being defined a maximal operator, its previous value at the beginning
of the trace is true. Similarly, we can give the calculus for the other past time LTL
operators as follows:

Previous (F) = Previous ′(F, false)
eval(Previous ′(F,past1),s) = eval(past1,s)
update(Previous ′(F,past1),s) = Previous ′(update(F,s),eval(F,s))

EventuallyInPast (F) = EventuallyInPast ′(F, false)
eval(EventuallyInPast ′(F,past1),s) = eval(F ∨past1,s)
update(EventuallyInPast ′(F,past1),s) =

EventuallyInPast ′(update(F,s),eval(EventuallyInPast ′(F,past1),s))

Since (F1,F2) = Since ′(F1,F2, false)
eval(Since ′(F1,F2,past1),s) = eval(F2∨ (F1∧past1),s)
update(Since ′(F1,F2,past1),s) =

Since ′(update(F1,s),update(F1,s),eval(Since ′(F1,F2,past1),s))

Zince (F1,F2) = Zince ′(F1,F2, true)
eval(Zince ′(F1,F2,past1),s) = eval(F2∨ (F1∧past1),s)
update(Zince ′(F1,F2,past1),s) =

Zince ′(update(F1,s),update(F1,s),eval(Zince ′(F1,F2,past1),s))

10

For the sake of completeness of the calculus we explicitly definevalueon the above
LTL operators as follows:

value(Always (F)) = true value(Eventually (F)) = false
value(Until (F1,F2)) = false value(Unless (F1,F2)) = true
value(AlwaysInPast ′(F,past1)) = true value(EventuallyInPast ′(F,past1)) = false
value(Since ′(F1,F2,past1)) = false value(Zince ′(F1,F2,past1)) = true

Note that in the above calculus we have eliminated the previous operator by introducing
an auxiliary argument or placeholder for every formula guarded by the

⊙
operator.

Hence, we cannot use the operator
⊙

while writing an LTL formula. Instead we use the
rule Previous as defined above.

Correctness of Evaluation Given a set of definitions ofeval, updateandvaluefunc-
tions for the different operators of LTL, as detailed above, we claim that for a given
sequenceσ = s1s2 . . .sn and anEAGLE embedded LTL formulaF

σ,1 |=EAGLE F iff value(eval(. . . eval(eval(F,s1),s2) . . .sn)).

Insufficient space prohibits inclusion of the proof, or part thereof. However, we illustrate
the evaluation calculus with a small example.

Example Let us consider the LTL formula¤(p→♦·q) which is written asAlways (p→
EventuallyInPast (q)) in EAGLE. This formula, at the beginning of monitoring, gets
transformed into the formula

Always (¬p∨EventuallyInPast ′(q, false))

To save space we will useA andEp′ as shorthand forAlways andEventuallyInPast ′,
respectively. Thus the formula will be written asA(¬p∨Ep′(q, false)).

If we have a sequence of states{¬p,q},{¬p,¬q},{p,¬q}, then the step by step
monitoring of the above formula on this sequence takes place as follows:

Step 1:s= {¬p,q}
eval(A(¬p∨Ep′(q, false)),s)

= eval((¬p∨Ep′(q, false))∧©A(¬p∨Ep′(q, false)),s)
= (eval(¬p,s)∨eval(Ep′(q, false),s))∧eval(©A(¬p∨Ep′(q, false)),s)
= (true∨eval(Ep′(q, false),s))∧update(A(¬p∨Ep′(q, false)),s)
= true∧A(update(¬p∨Ep′(q, false),s))
= A(update(¬p,s)∨update(Ep′(q, false),s))
= A(¬p∨Ep′(update(q,s),eval(Ep′(q, false),s)))
= A(¬p∨Ep′(q,eval(q∨ false,s))) = A(¬p∨Ep′(q,eval(q,s)∨eval(false,s)))
= A(¬p∨Ep′(q, true∨ false)) = A(¬p∨Ep′(q, true))

Note in the above step,q being true in the state, the placeholder in the formulaEp′
becomes true. We now describe the other steps in short:

Step 2:s= {¬p,¬q}
eval(A(¬p∨Ep′(q, true)),s)

= true∧eval(©A(¬p∨Ep′(q, true),s))
= A(update(¬p∨Ep′(q, true),s))
= A(¬p∨Ep′(update(q,s),eval(Ep′(q, true),s)))
= A(¬p∨Ep′(q,eval(q∨ true,s)))
= A(¬p∨Ep′(q, true))

11

Step 3:s= {p,¬q}
eval(A(¬p∨Ep′(q, true)),s)

= eval((¬p∨Ep′(q, true)),s)∧eval(©A(¬p∨Ep′(q, true),s))
= (false∨ true)∧A(update(¬p∨Ep′(q, true),s))
= A(¬p∨Ep′(update(q,s),eval(Ep′(q, true),s)))
= A(¬p∨Ep′(q,eval(q∨ true,s)))
= A(¬p∨Ep′(q, true))

Final Value:
value(A(¬p∨Ep′(q, true))) = true

Thus the formula is satisfied on the trace.

4 Implementation and Complexity

We have an implementation for the monitoring framework forEAGLE in Java. The
implemented system works in two phases. First, it compiles the specification file to
synthesizea set of Java classes; a class is generated for each rule. Second, the Java class
files are compiled into Java bytecode and then the monitoring engine dynamically loads
the Java classes for rules at monitoring time and monitors a trace. However, for the
purpose of LTL monitoring we do not have to synthesize the Java classes as the set of
rules are fixed. Rather, we hardwire the whole algorithm in the implementation.

In order to make the implementation efficient we use the decision procedure of
Hsiang [12]. The procedure reduces a tautological formula to the constant true, a false
formula to the constant false, and all other formulas to canonical forms, each as an ex-
clusive disjunction (⊕) of conjunctions. The procedure is given below using equations
that are shown to be Church-Rosser and terminating modulo associativity and commu-
tativity.

simplify:
true ∧φ = φ false∧φ = false φ1∨φ2 = (φ1∧φ2)⊕φ1⊕φ2
φ∧φ = φ false⊕φ = φ φ1 → φ2 = true⊕φ1⊕ (φ1∧φ2)
φ⊕φ = false ¬φ = true⊕φ φ1 ≡ φ2 = true⊕φ1⊕φ2

φ1∧ (φ2⊕φ3) = (φ1∧φ2)⊕ (φ1∧φ3)

In particular the equationsφ∧ φ = φ and φ⊕ φ = false ensures that, at the time of
monitoring, we do not expand the formula beyond bound. The bound is given by the
following theorem:

Theorem 1. The size of the formula at any stage of monitoring is bounded by
O(m22m logm), wherem is the size of the initial LTL formulaφ for which we started
monitoring.

Proof. The above equations, when regarded as simplification rules, keeps any LTL for-
mula in a canonical form, which is an exclusive disjunction of conjunctions, where
the conjuncts are either propositions or subformulas having temporal operators at top
(see Fig 2). Moreover, after a series of applications ofeval on the statess1,s2, ...,sn,
the conjuncts in the normal formeval(. . .eval(eval(φ,s1),s2) . . . ,sn) are propositions or

12

subformulas of the initial formulaφ, each having a temporal operator at its top. Since
there are at mostm such subformulas, it follows that there are at most2m possibil-
ities to combine them in a conjunction. The space requirement for a conjunction is
O(mlogm), assuming that in the conjunction, instead of keeping the actual conjuncts,
we keep a pointer to the conjuncts and assuming that each pointer takesO(logm) bits.4

Therefore, one needs spaceO(m2m logm) to store the structure of any exclusive dis-
junction of such conjunctions. Now, we need to consider the storage requirements for
each of the conjuncts that appears in the conjunction. Note that, if a conjunct con-
tains a nested past time operator, thepast1 argument of that operator can be a formula.
However, instead of storing the actual formula at the argumentpast1 we can have a
pointer to the formula. Thus, each conjunct can take space up toO(mlogm). Hence
space required by all the conjuncts isO(m2 logm). Now for each past operator we
have a formula that is pointed to by thepast1 argument and all those formulas by the
above reasoning can take up spaceO(m22m logm). Hence the total space requirement is
O(mlogm2m+m2 logm+m22m logm), which isO(m22m logm). ut

The implementation contains a strategy for the application of these equations that
ensures that the time complexity of each step in monitoring is bounded. We next de-
scribe the strategy briefly. Since, our LTL formulas are exclusive disjunction of con-
junctions we can treat them as a tree of depth two: the root node at depth 0 representing
the⊕ operator, the children of the root at depth 1 representing the∧ operators, and
the leaf nodes at depth 2 representing propositions and subformulas having temporal
operators at the top. For example, Fig. 2 shows the tree representation of the formula
p→ ♦(q U r), whose canonical form istrue⊕ p⊕ (p∧♦(q U r)).

(qUr)pptrue

Fig. 2.Tree representation ofp→♦(q U r)

The application of theeval function
on a formula is done in depth-first fash-
ion on this tree and we build up the re-
sultant formula in a bottom-up fashion.
At the leaves the application ofeval re-
sults either in the evaluation of a propo-
sition or the evaluation of a rule. The
evaluation of a proposition returns either
true or false. We assume that this evalu-
ation takes unit time. On the other-hand,
the evaluation of a rule may result in an-
other formula in canonical form. The formula at any internal node (i.e a∧ node or a
⊕ node) is then evaluated by taking the conjunction (or exclusive disjunction) of the
formulas of the children nodes as they get evaluated and then simplifying them using
the set of equationssimplify . The following gives the pseudocode for the strategy:

4 Every unique subformula having a temporal operator at the top in the original formula can
give rise to several copies in the process of monitoring. For example, if we considerF1 = ¤♦q
after some steps, it may get converted toF2 = ♦q∧¤♦q. In F2 the two subformulas♦q are
essentially copies of♦q in F1. It is easy to see all such copies at any stage of monitoring will
be same. So we can keep a single copy of them and in the formula we use a pointer to point to
that copy.

13

1:Form eval (F ,s)
2: begin
3: Form F ′;
4: if F is conjunction of subformulas then
5: F ′ = true ;
6: for each subformula Fsub of F do
7: F ′ = simplify (F ′ ∧ eval (Fsub ,s));
8: endfor
9: else if F is exclusive disjunction of subformulas then
10: F ′ = false ;
11: for each subformula Fsub of F do
12: F ′ = simplify (F ′ ⊕ eval (Fsub ,s));
13: endfor
14: else if F is a rule or proposition then
15: ...
16: endif
17: return F ′;
18: endsub

Note that the application ofsimplify on the conjunction of two formulas (see line no. 7
in the pseudocode) requires the application of the distributive equationφ1∧ (φ2⊕φ3) =
(φ1∧φ2)⊕ (φ1∧φ3) and possibly other equations.

At any stage of this algorithm there are three formulas that are active: the orig-
inal formula F on which eval is applied, the formulaF ′, and the result of the eval-
uation of the subformulaFsub. So, by theorem 1 we can say that the space com-
plexity of this algorithm isO(m22m logm). Moreover, as the algorithm traverses the
formula once at each node it can possibly spendO(m22m logm) time to do the con-
junction and exclusive disjunction. Hence the time complexity of the algorithm is
O(m22m logm).O(m22m logm) or O(m422m log2m). These two bounds are given as the
following theorem.

Theorem 2. At any stage of monitoring the space and time complexity of the eval-
uation of the monitored LTL formula on the current state isO(m22m logm) and
O(m422m log2m) respectively.

Experiments: EAGLE has been applied to test a planetary rover controller in a collabo-
rative effort with other colleagues, see [2] for an earlier similar experiment using a sim-
pler logic. The rover controller, written in 35,000 lines of C++, executes action plans.
The testing environment contains a test-case generator that automatically generates in-
put plans for the controller. Additionally, for each input plan a set of temporal properties
is generated that the plan execution should satisfy. The properties are expressed using
either un-timed or metric, i.e real-time, LTLEAGLE formulas. The controller is exe-
cuted on the generated plans and the implementation ofEAGLE is used to monitor that
execution traces satisfy the formulas. A previously unknown real-time error was de-
tected in the first run, demonstrating that a certain task did not recognize the premature
termination of some other task.

14

5 Conclusion and Future Work
We have presented a representation of linear temporal logic with both past and fu-
ture temporal operators inEAGLE. We have shown how the generalized monitoring
algorithm for EAGLE becomes simple and elegant for this particular case. We have
bounded the space and time complexity of this specialized algorithm and thus showed
that general LTL monitoring is space efficient if we use theEAGLE framework. Initial
experiments have been successful. Future work includes: optimizing the current imple-
mentation and investigating other efficient subsets ofEAGLE.

References

1. 1st, 2nd and 3rd CAV Workshops on Runtime Verification (RV’01 - RV’03), volume 55(2),
70(4), 89(2) ofENTCS. Elsevier Science: 2001, 2002, 2003.

2. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Roşu, and
W. Visser. Experiments with Test Case Generation and Runtime Analysis. In E. Börger,
A. Gargantini, and E. Riccobene, editors,Abstract State Machines (ASM’03), LNCS, pages
87–107. Springer, March 2003.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens.METATEM: An Introduction.
Formal Aspects of Computing, 7(5):533–549, 1995.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification. In
Proceedings of Fifth International VMCAI conference (VMCAI’04) (To appear in LNCS),
January 2004. Download: http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp24.pdf.

5. D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and
W. Visser, editors,SPIN Model Checking and Software Verification, volume 1885 ofLNCS,
pages 323–330. Springer, 2000.

6. D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. InCAV’03, volume
2725 ofLNCS, pages 114–118. Springer-Verlag, 2003.

7. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime Exe-
cutions. InProceedings of Runtime Verification (RV’02)[1], pages 36–55.

8. B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. InPro-
ceedings of Runtime Verification (RV’01)[1], pages 44–60.

9. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. InProceedings, International Conference on Automated Software
Engineering (ASE’01), pages 412–416. ENTCS, 2001. Coronado Island, California.

10. K. Havelund and G. Roşu. Monitoring Programs using Rewriting. InProceedings, Interna-
tional Conference on Automated Software Engineering (ASE’01), pages 135–143. Institute
of Electrical and Electronics Engineers, 2001. Coronado Island, California.

11. K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. InTools and Algo-
rithms for Construction and Analysis of Systems (TACAS’02), volume 2280 ofLecture Notes
in Computer Science, pages 342–356. Springer, 2002.

12. J. Hsiang. Refutational Theorem Proving using Term Rewriting Systems.Artificial Intelli-
gence, 25:255–300, 1985.

13. D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandez. Collecting and Analyzing Data
from Distributed Control Programs. InProceedings of RV’01[1], pages 133–151.

14. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based
on Formal Specifications. InProceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

15. A. Pnueli. The Temporal Logic of Programs. InProceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 46–77, 1977.

16. K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expressions. In
Proceedings of the 3rd Workshop onRuntime Verification (RV’03) [1], pages 162–181.

15

